Multivariate Diophantine equations with many solutions
نویسندگان
چکیده
منابع مشابه
0 Ju l 2 00 1 Multivariate Diophantine equations with many solutions
Among other things we show that for each n-tuple of positive rational numbers (a 1 ,. .. , a n) there are sets of primes S of arbitrarily large cardinality s such that the solutions of the equation a 1 x 1 +· · ·+a n x n = 1 with x 1 ,. .. , x n S-units are not contained in fewer than exp((4 + o(1))s 1/2 (log s) −1/2) proper linear subspaces of C n. This generalizes a result of Erd˝ os, Stewart...
متن کاملMultivariate public key cryptosystems from diophantine equations
At CT-RSA 2006, Wang et al. [WYHL06] introduced the MFE cryptosystem, which was subsequently broken by Ding et al. [DHNW07]. Inspired by their work, we present a more general framework for multivariate public key cryptosystems, which combines ideas from both triangular and oil-vinegar schemes. We also propose a new public key cryptosystem, based on Diophantine equations, which implements the fr...
متن کاملInfinitely many insolvable Diophantine equations II
Let f(X1, . . . , Xm) be a quadratic form in m variables X1, . . . , Xm with integer coefficients. Then it is well-known that the Diophantine equation f(X1, . . . , Xm) = 0 has a nontrivial solution in integers if and only if the equation has a nontrivial solution in real numbers and the congruence f(X1, . . . , Xm) ≡ 0 (mod N) has a nontrivial solution for every integer N > 1. Such a principle...
متن کاملMultivariate Discrete Splines and Linear Diophantine Equations
In this paper we investigate the algebraic properties of multivariate discrete splines. It turns out that multivariate discrete splines are closely related to linear diophantine equations. In particular, we use a solvability condition for a system of linear diophantine equations to obtain a necessary and sufficient condition for the integer translates of a discrete box spline to be linearly ind...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2003
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa107-2-1